The technical sustainability of in-situ stabilisation/solidification

Michael Harbottle and Abir Al-Tabbaa
Cambridge University Engineering Department
Chris Evans
May Gurney Geotechnical Limited

http://www.subrim.org.uk
Objectives

• Comparison of technical/environmental sustainability of in-situ stabilisation/solidification and dig & dump

• Identification of potential improvements to currently used remediation methods

• Laboratory and site work to investigate potential improvements
Technical aspects of sustainable remediation

• Future benefits outweigh cost of remediation,

• Environmental impact of implementation is less than the impact of leaving the land untreated,

• Environmental impact of the remediation process itself is minimal and measurable,

• Time-scale over which the environmental consequences occur, and hence inter-generational risk, is part of the decision making process,

• Decision making process includes proper engagement of all stakeholders.
Methods of data analysis

- Multi-criteria analysis (MCA) – compares overall impacts
- Analysis based on 17 sub-criteria

<table>
<thead>
<tr>
<th>Emissions (greenhouse gas)</th>
<th>During</th>
<th>S/S</th>
<th>Landfill</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Onsite -100</td>
<td>Emissions mainly from cement production -26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Offsite 0</td>
<td>Emissions mainly from transportation/site operations 0</td>
</tr>
<tr>
<td></td>
<td>After</td>
<td>Onsite 10</td>
<td>Absorption of CO₂ over time 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Offsite 0</td>
<td>Landfill gas emissions -5</td>
</tr>
<tr>
<td>Weights</td>
<td></td>
<td>0.5 on and off site (global importance)</td>
<td></td>
</tr>
<tr>
<td>Overall scores</td>
<td>-45</td>
<td>-15.5</td>
<td></td>
</tr>
</tbody>
</table>
Methods of data analysis

• Examination of individual impacts, including:
 – Effect of contamination on human health
 – Efficient use of land
 – Air pollution/greenhouse gas emissions
 – Change in soil properties
 – Waste
 – Effects on other sites
 – Transportation
 – Use of raw materials
Case study details

• Comparison between S/S and dig & dump
 – Former industrial site
 – Contaminated with hydrocarbons
 – Potential risks to future site users and nearby watercourse
 – Approximately 7000 tonnes contaminated soil
 – Coarse grained material overlying clay layer
Case study details

• S/S:
 – Cement/bentonite grout
 – Barrier wall and hotspot treatment
 – Reduction in groundwater contamination by 98%

• Dig & dump:
 – All contaminated material removed to landfill
 – Replaced with clean fill
Outcome of MCA

• Indicated that S/S would perform better than dig & dump in terms of overall impact

• S/S also had less impact than leaving the land untreated - dig & dump did not.

• Sensitivity analyses generally backed up these conclusions
Immediate impacts

- Major negative impacts of S/S are due to the production of cement (CO$_2$ emission, energy consumption)

- Solidified soil can improve foundation strength
Immediate impacts

• Compared to dig & dump, S/S has:
 - Low impact on other sites
 - Low waste production
 - Relatively efficient use of materials
Long term impacts

Both techniques involve containment:

• S/S:
 – immediate reuse of soil
 – contaminants remain onsite and may escape from solidified mass eventually

• Dig & dump:
 – removes site risk but transports it elsewhere
 – organic contaminants may be degraded in long term
 – soil is not reused efficiently
Investigation into potential improvements

• Use of more environmentally sustainable cements
 – would reduce immediate impacts
 – Currently investigating MgO and low pH cements

• Degradation of organic contaminants over time
 – Exploring potential for biological degradation within solidified mass
Summary

• Immediate impacts for S/S are less onerous overall than for dig & dump

• Limited data availability in some areas

• S/S allows more rapid reuse of the contaminated soil

• Long term – contamination problems may be passed on to future generations